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Abstract: Enriching forest resource inventory is important to ensure the sustainable management
of forest ecosystems. Obtaining forest inventory data from the field has always been difficult,
laborious, time consuming, and expensive. Advances in integrating photogrammetry and computer
vision have helped researchers develop some numeric algorithms and methods that can turn 2D
(images) into 3D (point clouds) and are highly applicable to forestry. This paper aimed to develop
a new, highly accurate methodology that extracts sample plot parameters based on continuous
terrestrial photogrammetry. For this purpose, we designed and implemented a terrestrial observation
instrument combining real-time kinematic (RTK) and charge-coupled device (CCD) continuous
photography. Then, according to the set observation plan, three independent experimental plots
were continuously photographed and the 3D point cloud of the plot was generated. From this 3D
point cloud, the tree position coordinates, tree DBHs, tree heights, and other plot characteristics of the
forest were extracted. The plot characteristics obtained from the 3D point cloud were compared with
the measurement data obtained from the field to check the accuracy of our methodology. We obtained
the position coordinates of the trees with the positioning accuracy (RMSE) of 0.162 m to 0.201 m.
The relative root mean square error (rRMSE) of the trunk diameter measurements was 3.07% to
4.51%, which met the accuracy requirements of traditional forestry surveys. The hypsometrical
measurements were due to the occlusion of the forest canopy and the estimated rRMSE was 11.26%
to 11.91%, which is still good reference data. Furthermore, these image-based point cloud data also
have portable observation instruments, low data collection costs, high field measurement efficiency,
automatic data processing, and they can directly extract tree geographic location information, which
may be interesting and important for certain applications such as the protection of registered famous
trees. For forest inventory, continuous terrestrial photogrammetry with its unique advantages is a
solution that deserves future attention in the field of tree detection and ecological construction.

Keywords: forestry; image-based point cloud; continuous terrestrial photogrammetry; forest
inventory; geographical location
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1. Introduction

Forest inventory determines a forest’s current situation and trend and ensures the sustainable
management of forest ecosystems [1,2]. Tree diameter at breast height (DBH) and tree height are the
basic factors of forest inventory that determine the stand level structure distribution (i.e., tree location)
and, more importantly, the forest tree growth in the present situation and the relative distance between
trees and their mutual relations [3]. Obtaining forest inventory factors data with high precision and
minimum cost and time is a key objective in forestry research. Tree-to-tree data collection is a traditional
method of forestry sciences that is laborious and time-consuming. Therefore, developing cost-efficient
and time-efficient alternative methods is currently necessary [4,5].

In the past few decades, many non-contact methods have been proposed to simplify forest
resource surveys such as remote sensing images, aerial photogrammetry, 3D laser scanning, and
terrestrial photogrammetry [6–9]. The forest inventory model has been gradually improved from
two-dimensional (2D) data to a three-dimensional (3D) structure, which has completely changed
the global forest inventory model. Remote sensing images and aerial photogrammetry promptly
obtain forest surface data over a large area. However, these two methods have a limitation because
the accuracy of the terrestrial data under the tree crown is compromised [10–13]. 3D laser scanning
technology can efficiently collect high precision 3D data of a forest’s vertical structure. Therefore, it
has useful practical applications in forestry. In the Nordic countries such as Denmark and Finland,
forest inventory has been largely developed and managed by the Airborne Laser Scanning (ALS)
approach [14–16].

In China, 3D laser scanning technology has improved remarkably in recent years. Guo [17],
Pang [18], and Yang [19] studied the applicability and advantages of 3D laser scanning technology
to establish a forest resource inventory with few limitations including data redundancy and cost.
Zhang et al. [20] described two main point cloud data sources in photogrammetry – optical image and
laser radar data—and pointed out their advantages and disadvantages. Among many modern forest
survey techniques, the terrestrial photogrammetry method is attaining foresters’ attention with its
high precision and low price [21,22].

3D aerial photogrammetry and laser scanning have made a breakthrough in the past two
years in the field of remote sensing especially the introduction of various image matching and
point cloud reconstruction algorithms [23,24]. However, there are several studies on forest resource
inventory that relate to terrestrial photogrammetry under a canopy and forest stand monitoring by
establishing a three-dimensional point cloud model based on an image through a non-measurement
digital camera. In 2014, García-Gago et al. [25] proposed a new terrestrial measurement tool known
as a photogrammetry table, which attempted to generate dense 3D models in a terrestrial mode
through the initial approximation of computer vision and accurate and reliable refinement by the
adjustment of the photographic measurement beam. In the same year, Liang et al. [26] developed
uncelebrated hand-held consumer cameras for terrestrial photogrammetry with 88% data accuracy.
Huang et al. [27] developed a photoelectric scanner consisting of a non-measurement camera, a rotating
platform, and a controller. With the continuous development of imaging technology, there are many
commercial software programs based on an image point cloud such as Smart3D (Acute3D—A Bentley
Systems Company, Paris, French), Pix4D mapper (Pix4D company, Lausanne, Switzerland) and
Agisoft PhotoScan (AgiSoft LLC, Petersburg, Russia) [26,28–30]. To select the appropriate tools for
image processing, Song et al. [31] compared multiple image Mosaic software packages through the
verification analysis and a precision evaluation and determined the free or cheap software that meets
the requirements of photogrammetry. Surovy et al. [32] proposed a method to reconstruct 3D objects
with a real shape and appearance by using multi-view stereo vision (MVS) technology in combination
with computer vision and photogrammetry. The experiment shows that, with the increase in the
number of cameras, the precision of measuring an object’s spatial point position is getting higher.

In 2016, Mikita et al. [33] proposed a forest stand inventory working model based on the aerial
photogrammetry measurement of a UAV system and the terrestrial photogrammetry measurement
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inside the forest stand, which realized the identification and positioning of the trees in the sample plot.
He reported that the root mean square error (RMSE) of the breast diameter measurement was 1 cm and
the tree height estimation error was 1 m. Although this method can solve the problem of obtaining the
measuring tree factor of the tall trees in an overripe forest stand, the matching and calibration of UAV
images and terrestrial images are very complicated.

To reduce the cost of forest surveys, the terrestrial observation model is recommended for small
forest stand monitoring. By using aerial photogrammetry as a reference, a variety of sensors (such
as GPS, IMU, and CCD) have been gradually applied to terrestrial measurement modes. In 2018,
Pierzchała et al. [34] proposed the method of using a simultaneous localization and mapping (SLAM)
algorithm to generate a local forest map and they designed a mobile data acquisition platform that
integrates multiple sensors. Lastly, the resulting map was accurately evaluated in the form of a
three-dimensional point cloud. The feasibility of the equipment and the SLAM algorithm were verified,
the RMSE of the DBH measurement was reported to be 2.38 cm and the mean error of the tree position
measurement was 0.0476 m.

Although a relatively complete technical system for a forest resource inventory has been
established, the investigation cost, measurement accuracy, observation efficiency, and complexity
of the forest resource inventory are still the most difficult problems.

To minimize the forest resource inventory cost with high precision and efficiency, we proposed in
this study a new method based on terrestrial photogrammetry and the sample plot 3D point cloud
for the accurate extraction of forest parameters. In this method, a ground observation instrument
combining real-time kinematic (RTK) and charge-coupled device (CCD) continuous photography was
designed and implemented. Then, sample plot points were continuously photographed, according to
the customized observation scheme, and 3D point clouds were successively established. Lastly, based
on a point cloud model, a method was developed to identify and extract the geographical position
coordinates, tree diameter, tree height, and other stand parameters. This study mainly aimed to obtain
the following objectives: (1) to acquire a low-cost and hand-held continuous terrestrial photogrammetry
observation instrument for a forest resource inventory; (2) to obtain the precise geographical location
of trees including tree measurement factors in the small area of a high-value wood forest; and (3) to
determine the spatial structure at the stand level and extract the stand parameters.

The structure of the rest of this paper is as follows. In Section 2, we provide a step-by-step
description of the proposed method including a survey of the research area, the composition of the
measuring equipment, the data acquisition method, and the corresponding types of survey factors.
In Section 3, the proposed method was tested in the study area and the extraction results were verified
and compared with the field survey results on site. In Section 4, the results of tree extraction and the
importance of this study are discussed. Lastly, in Section 5, the conclusion is drawn.

2. Materials and Methods

The proposed method consists of three key steps including data acquisition, data processing, and
data analysis. First, according to the observation scheme, RTK and two CCD lenses were used to obtain
the camera point coordinates and corresponding image information, respectively. Among them, only
three sets of images and the point coordinate data of several stations were collected for each site and
the data were classified and stored by the development of a personal digital assistant (PDA). Second, a
3D point cloud was constructed according to the obtained data and the tree coordinates, tree diameter,
tree height, and other stand parameters were extracted by designing algorithms. Lastly, based on
the field measurement data, the extracted stand parameters are compared and analyzed to verify
the measurement accuracy and feasibility of the scheme. The framework of the proposed method is
summarized in Figure 1. The details are described in the following section.
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Figure 1. Workflow diagram exhibiting the stepwise processing of the data.

2.1. Study Area

The study was conducted in the forest park situated in the Haidian district (40◦00′30”N,
116◦19′50”E) of north-central Beijing urban area, China (Figure 2). The study area is located in
the warm temperate semi-humid and semi-arid continental monsoon climate zone with four distinct
seasons among which the summer is hot and the winter is cold receiving less precipitation, which is
normally in the form of snow. It is a man-made forest planted with Willow (Salix matsudana), Chinese
white poplar (Populus tomentosa), Chinese scholar tree (Sophora japonica), elm (Ulmus pumila), and
cypress (Juniperus chinensis). There are no bushes with only a small amount of understory herbs.
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Figure 2. Study area location map.

2.2. Field Survey

Standard data for the field survey were collected on 1 June, 2018. First, the test sample plot of 20 m
× 20 m in the test area was selected covering a total area of 0.12 hectares. Under the coordinate system
of WGS-84, the HI-TARGET H32 omnipotent GNSS RTK system (HI-TARGET corporation, Guangzhou,
China) was used to measure and mark four set stations in the open area around the test sample plot.
Then, the point coordinates and tree height of the tree in the test sample were observed successively
by using the NTS-391 total station (SOUTHSURVEY, Guangzhou, China) that was installed at the
set station through the unified coordinate system of the backward visual orientation to serve as the
standard values of tree position and tree height. Among these values, the tree position was close to the
base, the tree height was measured by the suspension mode of the station, and the tree species were
also recorded. Lastly, for the measurement of the tree position, 2 m-steel tape was used to measure the
corresponding DBH of the tree to serve as the standard values of the tree diameter. The overall feature
parameters of the experimental plots are shown in Table 1.

Table 1. Feature parameters of sample plots.

Stand
Features

Average
DBH (cm)

Average
Tree Height

(m)

Average
Height of

Crown (m)

Average Tree
Density

(tree/hectares)

Average
Slope

Average
Slope

Position

Average
Slope

Orientation

Parameter
values 27.7 21.00 18.37 372 Grade I 1 Flat 2 No slope 3

1 The slope is divided into I-VI grades of which grade I is a flat slope. 2 The slope position is divided into seven
types: ridge, upper, middle, lower, valley, flat, and whole slope. 3 The slope direction is divided into nine directions:
east, south, west, north, northeast, southeast, northwest, southwest, and no slope.

2.3. Continuous Terrestrial Photogrammetry (CTP)

The terrestrial photogrammetry instrument comprised of two CCD lenses (SONY ILCE-QX1,
Tokyo, Japan), Global Navigation Satellite System (GNSS) receivers (RTK module), attitude sensors
(MEMS angle sensor), a Personal Digital Assistant (PDA), special joints, and retractable rods (see
Figure 3). The PDA is the main operating module that uses a short-range wireless chip nRF24L01
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to transmit through each module. The vertical baseline of the two CCD lenses on the instrument
was fixed and the length of the baseline was 40 cm. The main optical axis of the upper lens and
the horizontal surface of the horizontal lens were at an angle of 30◦ forward while the main optical
axis of the lower lens maintained a horizontal direction forward (see Figure 4). The equipment such
as the GNSS modules and the dual-CCD camera modules needs to be properly tested before work.
The relative space of the MEMS sensor module is fixed and the relevant position and offset parameters
need to be examined and determined.Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 22 
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Figure 4. Two CCD lens placement details.

The experiment of image data acquisition was carried out on the afternoon of 4 June 2018.
According to the characteristics of the tree distribution and the instrument itself, we designed a “route
method” of a continuous terrestrial photogrammetry stand (see Figure 5). While working, the operator
used a stop-and-go pattern to take photos according to the designed route. Meanwhile the position
coordinates corresponding to the site and the attitude parameters of the CCD lens were collected to
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prepare for later image matching and point cloud construction. When shooting at a single site, it is
necessary to keep the instrument level upright. Three sets of images were obtained by continuous
photogrammetry along the direction of “30◦ to the left, right ahead, 30◦ to the right.” Simultaneously,
the lens attitude parameters three times and the position coordinates of the measuring site were
acquired. One meter distance was between two adjacent sites because too much space would lead
to low image overlap while too little space could add to extra internal and external work. It is worth
noticing that, for forest areas with a high canopy density and severe signal interference, at least five site
location coordinates should be collected. For the better results, we collected accurate point coordinate
information of the four corner points (Figure 5) at the edge of the observed route. In addition, the
accurate coordinate information of at least one-point position was also collected at the center of the
observation route.
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Figure 5. Terrestrial continuous photogrammetry route. The site marked with red indicates two points
to be noted: one point is that the coordinates of the site are collected accurately and the other point is
that the route to the site ensures the continuity of the captured image.

Three sample plots were observed successively through the above continuous photogrammetry
method. The images were divided into upper images and lower images among which 804,822
and 864 images were obtained from three sample plots and a total of 2490 images were collected.
The commercial software Pix4Dmapper was used to pre-process the images and site coordinates
obtained by the three test samples. Prior to image initialization pre-processing, the quality parameter of
the matching process was set to high and an automated lens calibration was performed simultaneously.
Point clouds were generated after image matching with the point density setting set to low.
The processes of creating image mosaics with Pix4Dmapper are based on the use of fundamental
principles of photogrammetry combined with robust algorithms from computer vision. One of the
most commonly used and most rigorous methods is the bundle adjustment algorithms based on the
structure from motion techniques. This method can extract features of individual images that could be
matched to their corresponding features in other images and the entire process is calculated by using an
incremental approach in which the bundle adjustment of an initial image pair is sequentially repeated
with more images incorporated at each iteration into a seamless panorama. After deep construction
and point cloud encryption, the sparse point cloud of the three sample plots was processed into the
encrypted point cloud model. Among them, the dense point cloud formed in plot 1 was 31.21 million
and the point cloud density was 31,799.964 per/m2. The dense point cloud formed in plot 2 was
64.50 million and the point cloud density was 64,982.316 per/m2. The dense point cloud formed in plot
3 was 95.24 million and the point cloud density was 83,463.851per/m2. The resulting three-dimensional
view of the point cloud is shown in Figure 6.
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Figure 6. Detailed 3D view of the point cloud from CTP. (a), (b), and (c) show the 3D point cloud
renderings established by CTP of plots 1, 2, and 3, respectively.

2.4. Extraction of Tree Position

For the extraction of the tree position, the dense point cloud was formed and the point cloud
data was imported into the LiDAR360 software (Beijing Digital Green Earth Technology Co., Ltd.,
Beijing, China). The air noise was removed to enhance the cloud data quality and to prepare for later
data processing. The filtering of the terrestrial point was realized by setting parameters such as the size
of the grid, the thickness of the terrestrial point, the window smoothness, and the size of the adjacent
window. The terrestrial point was separated and the digital elevation model (DEM) was generated.
Simultaneously, we normalized the filtered point cloud data by the DEM to remove the effect of terrain
fluctuation on cloud data. Due to the low canopy vegetation in the sample plot, only the point cloud
that was 0.3 m above the ground point height was used as the high vegetation point to participate in
individual tree segmentation. This distinction ensured the accuracy of the extraction of the tall tree
point cloud so that valuable information can be concentrated at the later stage of individual tree point
cloud data extraction and application. After the segmentation of tall trees, the point cloud information
of each tree was stored separately in the LiData file and was given a random color. It formed the point
cloud distribution effect of individual trees as shown in Figure 7. By extracting according to the tree
ID, the corresponding point cloud range and data file were selected and the location information of
the trees in the plot was automatically extracted in batches including the X, Y, and Z coordinates of
each tree and the corresponding tree ID information. In addition, each point coordinate was the actual
geographic coordinate in the WGS-84 coordinate system.
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Figure 7. Display diagram of the single tree partition effect in the sample plots. (a), (b), and
(c) represent the point cloud models of plots 1, 2, and 3, respectively, after the completion of the
single-segmentation operation.

2.5. Extraction of Tree DBH

Based on the pre-processing point cloud data after individual tree segmentation, we only needed
to set the extraction position to the reference height of the stem. Afterward, by using the TLS editing
tool of the LiDAR 360 software, we extracted the relevant point cutting of an individual tree (point
group). Since the point density of the point cloud was sufficiently large, the diameter at any height
of the tree can be measured by a very thin incision with a height interval of 20 mm (for example,
DBH extraction selected all points between 1.29 m and 1.31 m above the ground point, as shown in
Figure 8). Due to the irregularity of stem growth, we couldn’t simply use the method of the fitting
circle to extract DBH [35,36]. To accurately extract the tree’s DBH, based on the plane coordinates
of the point cloud data of the cutting ring, we used the least square method to precisely fit it into a
two-dimensional ellipse. That gave the approximate shape of the stem cross-section and the diameter
of the corresponding cross section at a tree’s DBH. Accordingly, in the case of high-density data, the
entire shape of the stem of a tree with a very low generalization was easy to describe.
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CSV format including the tree ID and the corresponding DBH. 
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Figure 8. Single tree diameter extraction based on point cloud data. The orange position in the red
box on the right is the breast height position and the red box on the left side is the point cloud of the
intercepted breast height position while the DBH is automatically extracted. The unit is meter.

The method of DBH batch extraction was adopted to realize the automatic batch extraction of
DBH in the sample plots as shown in Figure 9. Moreover, this method could also be exported in a CSV
format including the tree ID and the corresponding DBH.
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2.6. Extraction of Tree Height

In terrestrial observations, only the part below the canopy can be precisely modelled and it is
difficult to obtain the information of the canopy or the part above it. This is the reason that the tree
height of terrestrial observation is difficult to measure. Therefore, we propose a method to calculate the
height of individual trees based on the Kunze M. stem curve equation with point cloud data. First, the
longitudinal section of the stem for stem tapering is analyzed [37,38]. Then, according to the form
factor pattern of Kunze M. stem tapering, the overall outline of the stem can be divided into four parts.
Starting from top to bottom, part I is a cone (r = 2), part II is a paraboloidal (r = 1), part III is a cylinder
(r = 0), and part IV is for the concave curve part (r = 3). Among these parts, r stands for the form
factor (as shown in Figure 10) [39]. Since part III is the largest part of the entire volume, the stem form
index of this part is regarded as constant. In this way, we used the Kunze M. stem curve principle
(Equation (1)) to combine the pattern of the form factor and to calculate the height value, according to
the point cloud data model.

y2 = p× xr (1)

In the equation above, y is the radius of the cross-section of the stem, x is the length from the head
log to the cross sections, p is the coefficient, and r is the stem form factor.

The expression for the stem form factor r is shown below.

r = 2
ln(yi)− ln(yj)

ln(xi)− ln(xj)
(2)

In the equation above, yi and yj stand for the radiuses of different cross-sections of stems and xi
and xj stand for the length from the head log to each cross-section.

It can be seen from the principle of the Kunze M. stem curve that the shape of any part of the stem
can be expressed with a suitable value of form factor r. Thus, we established a plane-coordinate system
XHOYH for the stem curve as shown in Figure 10. Based on the point cloud data from individual
tree segmentation, the diameters d1, d2, and d3 of the individual trees in the cylinder (r = 0) interval
of part three were extracted by using the TLS editing tool of the LiDAR 360 software referring to
the method of DBH extraction. Among these diameters, d1 is the diameter of the trees located in the
third part near the breast, d3 is the tree diameter within the terrestrial point cloud data of the highest
observed position, and d2 is the tree diameter between d1 and d3. In addition, h1, h2, and h3 stand for
the corresponding height from the ground position to the position of d1, d2, and d3, respectively.

By applying Equations (1) and (2), with y = dj/2, x = H − hj (j = 1, 2, 3), the stem form factor r1

can be obtained at d2 and d3. Similarly, the stem form factor r2 can be obtained at d1 and d2. Since the
third part is the largest part of the stem and assuming that r1 = r2, the tree height H1 is based on the
positions of d1, d2, and d3, which can also be obtained.

In Section 2.5, we can extract the diameter at the breast height, which is considered to be an
important index of tree measurement. Therefore, an analysis was also conducted around the DBH.
Similarly, the TLS editing tool in the LiDAR 360 software was used to extract the diameter of the trees
1.2 m below the breast height and 1.4 m above the breast height. Similarly, the stem forms factors r3

and r4, which is obtained and it is assumed that r3 = r4 to obtain the tree height based on the position
of the DBH. Lastly, Equation (3) is used to calculate the tree height H.

H = (H1 + H2)/2 (3)
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Figure 10. Schematic diagram of the tree height calculated by the Kunze M. stem curve equation.

Of course, for the complete tree height display of the tree point cloud data, it is recommended to
use the measuring tool in the LiDAR 360 software to directly extract the tree height H.

2.7. Extraction of Other Stand Factors

In addition to the location and size (DBH and tree height) of the trees, there are many factors
that can objectively reflect stand features such as the tree density, average diameter at breast height,
average height of the stand, and stand spatial structure parameters (angle scale, size ratio, and mixed
degree) [40].

Tree density is the number of trees per unit area, which is the most commonly used density index
in forestry. For the sample plot, cloud data after individual tree segmentation, we set up the area box
of the area under test and determined the area S of the area under the test by using the measuring tool
box of the LiDAR 360 software. Meanwhile, the number of trees n in the sample plot was automatically
extracted. Then, the tree density N in the area under the test was calculated with Equation (4).

N =
n
S

(4)

In the equation above, n is the number of trees in the area under the test and S is the area under
the test.

The average diameter at breast height is the diameter corresponding to the average sectional area
of the stand, which is denoted by Dg. Simultaneously, this measurement is also a basic indicator of
tree thickness. For the point cloud data after individual tree segmentation, the tree DBH extraction
function of the TLS editing tool in the LiDAR 360 software was used to automatically extract the DBH
value of all trees in the sample plots and the corresponding total number of trees. Equation (5) was
used to calculate Dg, which is the average diameter at breast height.

Dg =

√
1
n

n

∑
i=1

d2
i (5)

In the equation above, Dg is the average diameter at breast height and di(i = 1, 2, 3, . . . , n) is the
diameter at breast height of tree i in the sample plot.

The average height of the stand is a quantitative index that indicates the growth status of trees
and a measurement scale that reflects the average height of trees. In stand expressions, the tree height
corresponding to the average diameter at breast height Dg is selected as the average height of the stand,
which is denoted by HD. Given considerations of accuracy, the average height of 3~5 “average trees”
that are close to the average diameter at breast height are usually measured in the stand inventory.
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Based on the point cloud data extracted from the DBH, the trees under the test were searched and
locked according to the DBH. According to the principle of tree height extraction in Section 2.6, the
height of the locked trees was first calculated separately and, then, its arithmetic mean value was taken
as HD known as the final average height of the stand.

The stand spatial structure parameters reflect the competition degree, size difference, and
horizontal distribution pattern within a stand. Among these parameters, species mingling reflects the
degree of the spatial isolation of different species and is represented by M. Dominance reflects the
dominance of the tree growth distribution and is expressed in terms of U. The Uniform angle index
reflects the evenness of the distribution of the trees in forests and is denoted by W. A forest stand
comprises neighbourhood structural units of n-trees. We applied the latest techniques of the nearest
neighbour statistics, which are based on the assumption that the spatial structure of a forest stand
is determined by the distribution of specific structural relationships within neighborhood groups of
trees. Based on the definitions and values of the spatial structure parameters in Figure 11 and on the
relevant principles and calculation equations proposed by Hui and Hong et al. [41–43], the point cloud
data were extracted by using the LiDAR 360 software. These data were used to calculate the mingling,
dominance, and uniform angle index to describe the homogeneity or heterogeneity of trees through
many species, diameter classes, and spatial arrangements.Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 22 
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2.8. Accuracy Assessment

Measured references in the field were used to evaluate the results of tree mapping. Mapping accuracy
is based on the plane position errors and elevation measurement errors. Accuracy is the percentage of
correct tree position detections [26,44,45]. The accuracy of the DBH, tree height, and position estimates
were evaluated by utilizing the Bias, root mean squared error (RMSE), relative Bias (rBias), and relative
RMSE (rRMSE), which is defined by Equations (6)–(9), respectively.

Bias =
1
n

n

∑
i=1

ei =
1
n

n

∑
i=1

(yi − yri) (6)

RMSE =

√
∑ (yi − yri)

2

n
(7)
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rBias =
Bias
yr
× 100% (8)

rRMSE =
RMSE

yr
× 100% (9)

where yi is the ith estimate, yri is the ith reference, yr is the mean of the reference values, and n is the
number of estimates. Relative Bias and RMSE were also employed to evaluate the mapping result and
were calculated by dividing Bias and RMSE by the mean of the reference values.

3. Results

3.1. Estimation and Accuracy Evaluation of the Tree Position

The forest stand 3D point cloud that was established based on images is the basis for subsequent
parameter extraction and calculation. Based on a comparison of the field measurements, we found that
the image-based tree position extraction results acquired positional accuracy (Table 2). For the position
extraction results of the three test plots, the maximum Bias was 0.190 m, the minimum Bias was
0.137 m, the maximum RMSE was 0.201 m, and the minimum RMSE was 0.162 m. Our model accuracy
was within the range of the standard accuracy requirements of a forest resource inventory [45].

Table 2. Comparison of the tree position extraction results by utilizing image-based and field measurements.

Sample Number Bias (m) RMSE (m)

1 0.190 0.201
2 0.152 0.162
3 0.137 0.162

3.2. Estimation and Accuracy Evaluation of the DBH and Tree Height

The results of the automatic processing of the photogrammetric point cloud showed a high
precision for the estimation of the DBH and height of the sampled trees (Table 3). The DBH accuracy
for the three experimental plots was satisfactory because the maximum value of rBias was 3.55% and
the minimum value was 2.05% while the maximum value of rRMSE was 4.51% and the minimum
value was 3.07%. This accuracy was within the range of the relevant accuracy requirements of a forest
resource inventory.

Table 3. Comparison of the DBH and height estimates by utilizing image-based estimates and
field measurements.

Sample Number Category Bias rBias (%) RMSE rRMSE (%)

1
DBH (cm) 0.89 3.55 1.13 4.51
Height (m) −2.22 −11.00 2.41 11.91

2
DBH (cm) 0.58 2.05 0.93 3.30
Height (m) −2.21 −10.28 2.46 11.47

3
DBH (cm) 0.78 2.61 0.92 3.07
Height (m) −2.33 −10.44 2.51 11.26

In the case of the tree heights, we obtained a bias greater than 2.2 m and an RMSE greater than
2.5 m compared with the total station measurement results, which indicated that the tree overestimation
error of the image-based point cloud is slightly larger than the relevant requirements of a forest resource
inventory. In the three experimental plots, the maximum value of rBias was 11.00% and the minimum
value was −10.28% while the maximum value of rRMSE was 11.91% and the minimum value was
11.26%. Despite the best efforts in the tree height ground measurement, there are many factors
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that influence tree height estimation on the ground and many reasons for large extraction errors.
Even though the tree height estimation error was not ideal, this image-based tree height estimation
method is still a good idea.

3.3. Calculation of Other Stand Factors

After acquiring the basic parameters of the stand (i.e., tree position, DBH, tree height, and plot
area) based on the 3D point cloud of the stand, we calculated the trees’ density, average DBH, average
height, uniform angle index, dominance, species mingling, and other important indicators of forest
stands, according to the relevant principles and calculation equations. These calculations have a great
value for reflecting the overall structure of the stand and mastering the characteristics of a stand of
trees. After further calculation, the results of other key factors in the three stand samples are shown
in Table 4. The density of the trees was not much different since the overall forest density was small,
which indicated that the forests in the study area was sparse. The average DBH and average height of
the forest stand in the three sample plots were very close, which indicated that the overall growth of
the trees in the study area was the same. The uniform angle index, dominance, and species mingling
were basically the same, which indicated that the spatial structure of the forest stand in the entire study
area has little difference and the forest stand characteristics were relatively consistent.

Table 4. Calculation results of other stand factors based on image point cloud data.

Sample
Number

Tree Density
(tree/hectares)

Average
DBH of

Stand (cm)

Average
Height of
Stand (m)

Uniform
Angle Index Dominance Species

Mingling

1 376 25.9 18.00 0.500 0.688 0.025
2 330 28.7 19.30 0.250 0.563 0.075
3 435 30.8 20.00 0.250 0.625 0.000

3.4. Comparison of Work Efficiency

For the image-based point cloud model, the data processing of the three plots included two parts:
field photography and internal processing. The number of images collected in the field of sample
plots No. 1 and No. 2 are almost similar although more images were taken from the No. 3 sample
plot than the first two plots. Expectedly, the corresponding internal and external processing times for
sample plot 3 was more than the other two plots (Table 5). Even though there was little difference in
the number of pictures from No. 1 and No. 2, the internal processing time was shorter for the No. 1
plot than for the No. 2 plot, which was due to the degree of overlap between the images and the
complexity of the actual picture of the forest stand. In general, during the development of the 3D point
cloud in the forest sample, the time required was much longer for the internal image processing than
for the field image collection and was approximately 30 times longer.

Table 5. Comparison of the efficiency of constructing 3D point clouds based on images.

Sample
Number

Image
Quantity

Field Photography
Time (min)

Internal Processing
Time (min)

Overall Work Time
Consuming (min)

1 804 13 417 430
2 808 13 347 360
3 862 15 483 498

4. Discussion

Through the field test of three sample plots, our study results have shown great potential for
RTK combined with CCD continuous photogrammetry for the automatic calculation of forest tree
parameters for forest management inventory purposes. This study has great significance for the fine
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monitoring and management of rare and high-value tree species. It is suitable for the key monitoring
of small-scale plots and could be extended to large-scale plots when needed. The focus of the study
was to develop a new terrestrial photogrammetry device for the creation of 3D point cloud models for
the estimation of sample plot survey. As shown in Figures 3 and 4, the device is based on the principle
of stereoscopic photogrammetry and uses the RTK module to collect the linear elements in real time
and determines the angular elements in real time with the MEMS module. At the same time, in the
sample observation, it is necessary to follow the design route shown in Figure 5 strictly to ensure the
accuracy of data collection. These data are the key elements of the accurate calculation of the obtained
images. To check the reliability of our system, we compared our model estimates with the field data
and it showed a very high accuracy.

The most significant advantage of the proposed method is the combination of RTK real-time
positioning technology and terrestrial photogrammetry using Structure from Motion (SfM) [33,46,47]
to calculate the attitude of each image (the motion) to the external camera and to realize the feature
matching of the images and the construction of the real 3D point cloud (the structure). Compared with
the existing method of using simple photogrammetry to construct the non-real coordinate model in the
relative coordinate system [26,38], our method could directly extract the real geographical coordinates
of the points without the use of other external auxiliary equipment or ground objects to restore the
model scale. Our results showed that the extraction accuracy (RMSE) of the trees in the three test plots
was 0.201 m, 0.162 m, and 0.162 m. Our model’s estimates showed a high accuracy compared with
that of the field data collected from the same sampling plots (Table 2). The accuracy of the model
estimates was highly consistent with the accuracy requirements of the forestry survey [48] with slight
deviations. This inaccuracy and deviation could be caused by the method of field measurement because
all surveyed positions correspond with the closest point at the base of the stem while the automatically
detected trees from an image-based measurement were identified directly by its centers from the point
cloud. In terms of assessing the number of trees per hectare or stand and the overall structure of
the forest, these errors are negligible [33]. Foresters are needed to consider the accuracy of GNSS
receiver while working under the forest canopies. Since there is a relationship between positioning
accuracy and certain variables of the forest canopy characteristics (such as tree density, basal area, and
biomass volume), positioning accuracy can affect the measurements [49–51]. Moreover, if the forest
canopy structure is more complex, then the chances of multipath effect of the localization signal would
increase [52]. In addition, the accuracy of the positioning signal under forest canopy is directly related
to the formation of the 3D point cloud of sample plot and the extraction accuracy of the point cloud
parameters [53]. Therefore, our method is more suitable for low-density and medium-density forests
than high-density forests. The DBH values of the sample plot of trees that were extracted by the image
point cloud and the field data were compared for all three sample plots (Figure 12). Our results were
very similar to the error behavior of the diameter estimation. The RMSE of Figure 12a was 1.13 cm, the
RMSE of Figure 12b was 0.93 cm, and the RMSE of Figure 12c was 0.92 cm while the overall fitting
effect was better and followed the same pattern. This method of extracting DBH through nonlinear
fitting of a point cloud model is an improvement to the simple circle fitting method [9,35,36,54] and the
fitting accuracy is also improved. In addition, the difficulty and accuracy of the extraction of the DBH
extraction were related to the topography of the observed stand. For the sample plot with a single
terrain and flat terrain, the extraction of the DBH was less difficult, the breast height was extracted
accurately, and the DBH extraction accuracy was high. For the sample plot, it is not recommended to
use the method of breast diameter batch extraction. It is necessary to extract the single tree separately
since it is difficult to ensure the precision of breast diameter extraction.



www.manaraa.com

Remote Sens. 2018, 10, 1299 17 of 22

Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 23 

 

  
(a) Sample No. 1 (b) Sample No. 2 

 
(c) Sample No. 3 

Figure 12. Comparative analysis of the DBH extraction values based on the image point clouds and 

the field measured value. (a), (b), and (c) are the comparative analysis of the DBH of plots 1, 2, and 3, 

respectively. 

Figure 13 shows the comparison of the estimated tree height by using the image point cloud and 

the measured tree height with the total station instrument, according to the principle of section 2.6 

for the three sample plots. The results showed that the RMSE of Figure 13(a) was 2.41 m, the RMSE 

of Figure 13(b) was 2.46 m, the RMSE of Figure 13(c) was 2.51 m, and the overall tree height estimate 

was smaller. Although we have done considerable work on the tree height extraction of the terrestrial 

photogrammetry, we have also attempted a variety of tree height extraction methods, but the total 

extraction accuracy (RMSE) of the tree height was inferior. This was because of the limitations of the 

terrestrial photography itself. For the extraction of the upper position that cannot be taken on the 

ground, regardless of the feasibility of extraction or the measurement accuracy, the terrestrial 

photogrammetry is clearly lagging behind the UAV photogrammetry [33,55,56]. In view of the 

limitation of terrestrial photography, this paper introduced the Kunze M. curve equation of the point 

cloud model to estimate individual tree height. Based on the effective point cloud data in the lower 

part of the canopy, according to the curve growth law of the trunk section, the tree height value of 

the occluded part is scientifically fitted to achieve the purpose of tree height estimation. Currently, 

we can achieve the purpose of tree height extraction based on ground continuous photogrammetry 

especially in the case where the canopy is occluded in the sample plot, but the accuracy and 

application effect of the extraction are not guaranteed. The possible reason behind this could be the 

distribution of effective point clouds on the ground photography, the size of the canopy closure, the 

distribution of coniferous broadleaf species, and the standard of tree growth in the sample plot and 

other factors. To improve the extraction accuracy of the tree height of the stand, it is necessary to 

ensure that the 3D point cloud of the entire tree (including the root of the tree and the top of the tree) 

is obtained and it is the effective point cloud data. 

Figure 12. Comparative analysis of the DBH extraction values based on the image point clouds and
the field measured value. (a), (b), and (c) are the comparative analysis of the DBH of plots 1, 2, and
3, respectively.

Figure 13 shows the comparison of the estimated tree height by using the image point cloud and
the measured tree height with the total station instrument, according to the principle of Section 2.6
for the three sample plots. The results showed that the RMSE of Figure 13a was 2.41 m, the RMSE
of Figure 13b was 2.46 m, the RMSE of Figure 13c was 2.51 m, and the overall tree height estimate
was smaller. Although we have done considerable work on the tree height extraction of the terrestrial
photogrammetry, we have also attempted a variety of tree height extraction methods, but the total
extraction accuracy (RMSE) of the tree height was inferior. This was because of the limitations of
the terrestrial photography itself. For the extraction of the upper position that cannot be taken on
the ground, regardless of the feasibility of extraction or the measurement accuracy, the terrestrial
photogrammetry is clearly lagging behind the UAV photogrammetry [33,55,56]. In view of the
limitation of terrestrial photography, this paper introduced the Kunze M. curve equation of the point
cloud model to estimate individual tree height. Based on the effective point cloud data in the lower
part of the canopy, according to the curve growth law of the trunk section, the tree height value of the
occluded part is scientifically fitted to achieve the purpose of tree height estimation. Currently, we can
achieve the purpose of tree height extraction based on ground continuous photogrammetry especially
in the case where the canopy is occluded in the sample plot, but the accuracy and application effect of
the extraction are not guaranteed. The possible reason behind this could be the distribution of effective
point clouds on the ground photography, the size of the canopy closure, the distribution of coniferous
broadleaf species, and the standard of tree growth in the sample plot and other factors. To improve the
extraction accuracy of the tree height of the stand, it is necessary to ensure that the 3D point cloud of
the entire tree (including the root of the tree and the top of the tree) is obtained and it is the effective
point cloud data.
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and field measured values. (a), (b), and (c) are the height comparison analysis of plots 1, 2, and
3, respectively.

Apart from the mentioned accuracy, our method of the continuous terrestrial photogrammetry for
a sample plot survey is very efficient and cost-effective in terms of field work. Since there is no need to
lay out control points or prepare landmarks in advance, this method saves plenty of field work time
and it can greatly reduce not only the investment of workers but also labor costs. The requirement
of additional investment for data acquisition equipment (DAE) or external expert knowledge could
be minimized to a great extent. However, since image data processing has high requirements for
software and hardware devices and Table 5 showed the time consumption of internal and external data
processing, we need more smooth processing software and higher configuration hardware devices.
After the optimization process, this methodology could serve as a good tool for a fast forest inventory
even in the commercial sector. Although this method can obtain information regarding the tree
positions for forest structure modelling and the accuracy of its DBH measurements is almost similar
to the field data, the most possible limitation of this methodology could be its applicability only to
the under-crown layer of the sample plot. This limitation could be fixed by obtaining cloud points
above the crown. In addition, in high-density forests, the applicability and positioning accuracy of
the methodology could be affected. Even with the combination of GNSS and Inertial Measurement
Unit (IMU) positioning, it is still difficult to achieve satisfactory results under the high-density forest
canopy [57,58]. For low-density and medium-density forest areas, the positioning signal could be
interfered slightly, but the impact is negligible. It can be tried by increasing the acquisition point time
and adjusting the observation scheme or placing auxiliary signs.
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5. Conclusions

In this work, we presented a novel method for extracting sample plot parameters based
on continuous terrestrial photogrammetry. We establish 3D point cloud models by using the
self-developed terrestrial photogrammetry instrument, commercial software, and sample plot
parameter extraction methods to provide high-resolution realistic stand point clouds and to describe
individual trees and the estimation of common sample plot survey parameters. Compared with
previous studies, the most significant contribution of this methodology is to provide a low-cost,
high-precision, and stable forest sample plot parameter extraction model and it can directly obtain
the geographical coordinates of trees by using the RTK module, which saves a lot of manpower
and material investment in the field survey. This methodology may be a cheap and fast alternative
for terrestrial field measurement with a special focus on the quick and precise determination of the
individual trees and forest stand attributes in high-value timber class stands. Moreover, our results
showed that this methodology could be widely applied to tree position and DBH measurement and its
tree height estimation method can also be used as a reference.

Nevertheless, there are many areas that need to be improved such as how to establish a
high-precision 3D point cloud with less images. Further studies are recommended to determine
the accuracy of the stem curve estimation using image-based point cloud data and the possibilities of
applying different image collection strategies and setups in the field.
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